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General Upper Bounds on Sample Complexity

Introduction : Learning by Minimizing Sample Error

e Sample error minimization (SEM) algorithm is any function L : | J_, Z™ — H with
the property :
for any m and any z € Z7,

L(z) = argmin ér,(h).
heH

e Theorem 4.1 Suppose that H is a finite set of {0, 1}-valued functions. Then any
SEM algorithm for H is a learning algorithm for H.

e Aim : The theorem also holds for many infinite function classes.

= If H has finite VC-dimension, the estimation error and sample complexity of any
SEM algorithm can be bounded in terms of th VC-dimension of H.
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General Upper Bounds on Sample Complexity

Main theorem

e Theorem 4.2 Suppose that H is a set of functions from a set X to {0,1} and that
H has finite VC dimension d > 1. Let L be any SEM algorithm for H. Then L is a
learning algorithm for H. In particular, if m > d/2 then the estimation error of L
satisfies

im0t (3 () ()

and its sample complexity satisfies the inequality

mi(e,8) < mo(e, 8) = % <2d|n (1?2) +ln <§)> .
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General Upper Bounds on Sample Complexity

Uniform Convergence and Learnability

e The crucial step towards proving learnability is to obtain a result on the uniform

convergence of sample errors to true errors.

e Theorem 4.3 Suppose that H is a set of {0, 1}- valued functions defined on a set
X and that P is a probability distribution on Z = X x {0,1}. For0 <e <1 and m
a positive integer, we have

2
P™{|erp(h) — ér.(h)| > € for some h € H} < 4My(2m)exp (7%) .
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General Upper Bounds on Sample Complexity

Proof of Uniform Convergence Result

e Symmetrization : bound the desired probability in terms of the probability of an

event based on two samples.

e Lemma 4.4 With the notation as above, let
Q={ze€Z": |erp(h) — ér.(h)| > € for some h € H}

and
R={(r,s) €Z" x Z™ : |ér,(h) — érs(h)| > % for some h € H}.

Then, for m > 2/¢2,
P™(Q) < 2P*™(R).
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General Upper Bounds on Sample Complexity

Proof of Uniform Convergence Result

Permutations : involving a set of permutations on the labels of the double sample.

Let I'm be the set of all permutations of {1,2,...,2m} that swap i and m+ i. For
instance, o € '3 might give

U(Zl, Z2,23,24, 75, ZG) = (217 Z5, 26, Z4, 22, 23)-
Lemma 4.5 Let R be any subset of Z2™ and P any probability distribution on Z.

Then
P*"(R) = EPr(0z € R) < max Pr(0z € R),
zezZem

where the expectation is over z chosen according to P?>™, and the probability is over

o chosen uniformly from I,.

proof) For any o € I'm, P*"(R) = P*"{z: 0z € R}.
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General Upper Bounds on Sample Complexity

Proof of Uniform Convergence Result

® Reduction to a finite class : reduce the problem to one involving a finite function

class.

e Lemma 4.6 For the set R C Z?™ defined in Lemma 4.4, and permutation o chosen

uniformly at random from [,

é€m
max Pr(cz € R) <2MNy(2m)exp | ——— | .
zez2m 8

e proof) let S = {x1,...,xem} and t = |Hs|, then t < My(2m). Then there are
functions hy, ..., hy € H. And use Hoeffding's lemma.
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General Upper Bounds on Sample Complexity

Application to the Perceptron

e Since n-input perceptron has a finite VC-dimension of n+ 1, as shown in chaper 3,

e We immediately get an estimation error bound and sample complexity bound for a
SEM algorithm from theorem 4.2.
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General Upper Bounds on Sample Complexity

The Restricted Model

e tis called target function if P{(x,t(x)): x € X} =1.

e Theorem 4.8 Suppose that H is a set of functions from a set X to {0,1} and that
H has finite VC dimension d > 1. Let L be such that for any m and for any t € H,
if x € X™ and z is the training sample corresponding to x and t, then the
hypothesis h = L(z) satisfies h(x;) = t(x;) for i =1,2,...,m. Then L is a learning
algorithm for H in the restricted model, with sample complexity

mi(e,0) < 2 (d'" (E) i @)

and with estimation error
2 2 2
er(m,d) < - (dln (?) +1In (5)) .

® Such an algorithm in the theorem constitutes a SEM algorithm.
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General Upper Bounds on Sample Complexity

A better uniform convergence result

e Theorem 4.3 is not the best uniform convergence result that can be obtained, nor is
the learnability result in Theorem 4.2.

e Theorem 4.10 There is a positive constant ¢ such that the following holds.
Suppose that H is a set of functions from a set X to {0,1} and that H has finite
VC dimension d > 1. Let L be any SEM algorithm for H. Then L is a learning
algorithm for H and its sample complexity satisfies the inequality

mu(e,8) < mb(e,) = 5 <d+ In (%)) .

e mo(e,d) of Theorem 4.2 contains an additional In(1/¢) term multiplying the

VC-dimension.
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General Upper Bounds on Sample Complexity

A better uniform convergence result

e proof) Use the following Lemma 4.11, which is the improvement of Lemma 4.6.

e Lemma 4.11 For the set R C Z?™ defined in Lemma 4.4, and permutation o
chosen uniformly at random from T, if m > 400(VCdim(H) + 1) /€2, then

VCdim(H) €m
max Pr(cz € R) < 4-41"""""exp (——) .

zez2m
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General Lower Bounds on Sample Complexity

Introduction : Goals of This chapter

e Provide lower bounds on the estimation error and sample complexity of any learning

algorithm in terms of the VC-dimension of the class.

® These lower bounds are not vastly different from the upper bounds of the previous

chapter.

e A function class is learnable if and only if it has finite VC-dimension.
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General Lower Bounds on Sample Complexity

A technical lemma

e Lemma 5.1 Suppose that « is a random variable uniformly distributed on {a_, a+},
where o. =1/2 —¢/2 and ay = 1/2+ ¢/2, with 0 < € < 1. Suppose that
&1, ...,&m beiid. {0,1}-valued random variables with Pr({; = 1) = « for all i. Let
f be a function from {0,1}" to {a_, a+}. Then

PF(Gr-.. 6n) £ ) > & <1_ \/1_exp (—21%_7/21))

Hence, if this probability is no more than §, where 0 < § < 1/4, then

m= 2{12_5262'” <85(11—25))J'
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General Lower Bounds on Sample Complexity

The general lower bound

e Theorem 5.2 Suppose that H is a class of {0, 1}-valued functions and that H has
VC dimension d. For any learning algorithm L for H, the sample complexity

my (e, ) of L satisfies
d
>
mi(€,9) 2 3302

for all 0 < €, < 1/64. Furthermore, if H contains at least two functions, we have

my(e, 8) > 2{12_626 In (85(117 25))J

foral0<e<land0<4<1/4
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General Lower Bounds on Sample Complexity

The Restricted Model

e Theorem 5.3 Suppose that H is a class of {0, 1}-valued functions and that H has
VC dimension d. For any learning algorithm L for H in restricted model, the sample
complexity m(e,d) of L satisfies

d—1

32¢

mL(ev 5) >
forall 0 < e <1/8and 0 < § < 1/100. Furthermore, if H contains at least two

1 1
my(e,6) > 2—€In (5)

forall0 <e<3/4and 0< <1

functions, we have
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General Lower Bounds on Sample Complexity

VC-Dimension Quantifies Sample Complexity and Estimation Error

e inherent sample complexity is mu(e,d) = ming m. (e, ).

e Theorem 5.4 Suppose that H is a set of functions that map from a set X to
{0,1}. Then H is learnable if and only if it has finite VC dimension. Furthermore,
there are constants ci, ¢, > 0 such that the inherent sample complexity of the

learning problem for H satisfies

& (VCdim(H) +1n <%>) < mu(e,0) < 5 (VCdim(H) £ (é))

forall0 <e<1/40 and 0 <6 < 1/20.
e proof) Combine theorem 5.2 and 4.10.

e if L is a SEM algorithm for H, then its sample complexity satisfies these
inequalities, and so its estimation error grows as \/VCdim(H) + In(1/5)/m.
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General Lower Bounds on Sample Complexity

VC-Dimension Quantifies Sample Complexity and Estimation Error

e Theorem 5.5 For a class H of functions mapping from a set X to {0,1}, the

following statements are equivalent.
(1) H is learnable.

(2) The inherent sample complexity of H, mu(e, §), satisfies

e =0 (A0 (1),

(3) The inherent estimation error of H, en(m, ), satisfies

en(m.5) = © ( %m (;)) .

(4) VCdim(H) < co.
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General Lower Bounds on Sample Complexity

VC-Dimension Quantifies Sample Complexity and Estimation Error

e Theorem 5.5(continued)
(5) The growth function of H, My(m), is bounded by a polynomial in m.

(6) H has the following uniform convergence property: There is a function
eo(m, 0) satisfying
o for every probability distribution P on X x {0,1},

pm {sup lerp(h) — ér.(h)| > eo(m, 6)} <0,
heH

o co(m,8) = O ( (1/m)|n(1/5)) .

e O(:) notation indicates the functions are asymptotically withen a constant factor of
each other.
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General Lower Bounds on Sample Complexity

VC-Dimension Quantifies Sample Complexity and Estimation Error

e H is learnable in the restricted model iff H has finite VC dimension.

e And the inherent sample complexity of the restricted learning problem for H satisfies

2 <VCdim(H) +1n (%)) < mi(e,8) < 2 (VCdim(H) in (%))

for some constants c1, ¢ > 0.
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