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General Upper Bounds on Sample Complexity

Introduction : Learning by Minimizing Sample Error

• Sample error minimization (SEM) algorithm is any function L :
∪∞

m=1 Z
m → H with

the property :

for any m and any z ∈ Zm,

L(z) = argmin
h∈H

êr z(h).

• Theorem 4.1 Suppose that H is a finite set of {0, 1}-valued functions. Then any

SEM algorithm for H is a learning algorithm for H.

• Aim : The theorem also holds for many infinite function classes.

⇒ If H has finite VC-dimension, the estimation error and sample complexity of any

SEM algorithm can be bounded in terms of th VC-dimension of H.
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General Upper Bounds on Sample Complexity

Main theorem

• Theorem 4.2 Suppose that H is a set of functions from a set X to {0, 1} and that

H has finite VC dimension d ≥ 1. Let L be any SEM algorithm for H. Then L is a

learning algorithm for H. In particular, if m ≥ d/2 then the estimation error of L

satisfies

ϵL(m, δ) ≤ ϵ0(m, δ) =

(
32

m

(
d ln

(
2em

d

)
+ ln

(
4

δ

)))1/2

and its sample complexity satisfies the inequality

mL(ϵ, δ) ≤ m0(ϵ, δ) =
64

ϵ2

(
2d ln

(
12

ϵ

)
+ ln

(
4

δ

))
.
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General Upper Bounds on Sample Complexity

Uniform Convergence and Learnability

• The crucial step towards proving learnability is to obtain a result on the uniform

convergence of sample errors to true errors.

• Theorem 4.3 Suppose that H is a set of {0, 1}- valued functions defined on a set

X and that P is a probability distribution on Z = X × {0, 1}. For 0 < ϵ < 1 and m

a positive integer, we have

Pm{|erP(h)− êr z(h)| ≥ ϵ for some h ∈ H} ≤ 4ΠH(2m)exp

(
− ϵ2m

8

)
.
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General Upper Bounds on Sample Complexity

Proof of Uniform Convergence Result

• Symmetrization : bound the desired probability in terms of the probability of an

event based on two samples.

• Lemma 4.4 With the notation as above, let

Q = {z ∈ Zm : |erP(h)− êr z(h)| ≥ ϵ for some h ∈ H}

and

R = {(r , s) ∈ Zm × Zm : |êr r (h)− êr s(h)| ≥
ϵ

2
for some h ∈ H}.

Then, for m ≥ 2/ϵ2,

Pm(Q) ≤ 2P2m(R).

July 14, 2017 5 / 19
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General Upper Bounds on Sample Complexity

Proof of Uniform Convergence Result

• Permutations : involving a set of permutations on the labels of the double sample.

• Let Γm be the set of all permutations of {1, 2, . . . , 2m} that swap i and m + i . For

instance, σ ∈ Γ3 might give

σ(z1, z2, z3, z4, z5, z6) = (z1, z5, z6, z4, z2, z3).

• Lemma 4.5 Let R be any subset of Z 2m and P any probability distribution on Z .

Then

P2m(R) = EPr(σz ∈ R) ≤ max
z∈Z2m

Pr(σz ∈ R),

where the expectation is over z chosen according to P2m, and the probability is over

σ chosen uniformly from Γm.

• proof) For any σ ∈ Γm, P
2m(R) = P2m{z : σz ∈ R}.

July 14, 2017 6 / 19
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General Upper Bounds on Sample Complexity

Proof of Uniform Convergence Result

• Reduction to a finite class : reduce the problem to one involving a finite function

class.

• Lemma 4.6 For the set R ⊆ Z 2m defined in Lemma 4.4, and permutation σ chosen

uniformly at random from Γm,

max
z∈Z2m

Pr(σz ∈ R) ≤ 2ΠH(2m)exp

(
− ϵ2m

8

)
.

• proof) let S = {x1, . . . , x2m} and t = |H|s |, then t ≤ ΠH(2m). Then there are

functions h1, . . . , ht ∈ H. And use Hoeffding’s lemma.
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General Upper Bounds on Sample Complexity

Application to the Perceptron

• Since n-input perceptron has a finite VC-dimension of n + 1, as shown in chaper 3,

• We immediately get an estimation error bound and sample complexity bound for a

SEM algorithm from theorem 4.2.

July 14, 2017 8 / 19
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General Upper Bounds on Sample Complexity

The Restricted Model

• t is called target function if P{(x , t(x)) : x ∈ X} = 1.

• Theorem 4.8 Suppose that H is a set of functions from a set X to {0, 1} and that

H has finite VC dimension d ≥ 1. Let L be such that for any m and for any t ∈ H,

if x ∈ Xm and z is the training sample corresponding to x and t, then the

hypothesis h = L(z) satisfies h(xi ) = t(xi ) for i = 1, 2, . . . ,m. Then L is a learning

algorithm for H in the restricted model, with sample complexity

mL(ϵ, δ) ≤
4

ϵ

(
d ln

(
12

ϵ

)
+ ln

(
2

δ

))
and with estimation error

ϵL(m, δ) ≤ 2

m

(
d ln

(
2em

d

)
+ ln

(
2

δ

))
.

• Such an algorithm in the theorem constitutes a SEM algorithm.
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General Upper Bounds on Sample Complexity

A better uniform convergence result

• Theorem 4.3 is not the best uniform convergence result that can be obtained, nor is

the learnability result in Theorem 4.2.

• Theorem 4.10 There is a positive constant c such that the following holds.

Suppose that H is a set of functions from a set X to {0, 1} and that H has finite

VC dimension d ≥ 1. Let L be any SEM algorithm for H. Then L is a learning

algorithm for H and its sample complexity satisfies the inequality

mL(ϵ, δ) ≤ m′
0(ϵ, δ) =

c

ϵ2

(
d + ln

(
1

δ

))
.

• m0(ϵ, δ) of Theorem 4.2 contains an additional ln(1/ϵ) term multiplying the

VC-dimension.

July 14, 2017 10 / 19
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General Upper Bounds on Sample Complexity

A better uniform convergence result

• proof) Use the following Lemma 4.11, which is the improvement of Lemma 4.6.

• Lemma 4.11 For the set R ⊆ Z 2m defined in Lemma 4.4, and permutation σ

chosen uniformly at random from Γm, if m ≥ 400(VCdim(H) + 1)/ϵ2, then

max
z∈Z2m

Pr(σz ∈ R) ≤ 4 · 41VCdim(H)exp

(
− ϵ2m

576

)
.
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General Lower Bounds on Sample Complexity

Introduction : Goals of This chapter

• Provide lower bounds on the estimation error and sample complexity of any learning

algorithm in terms of the VC-dimension of the class.

• These lower bounds are not vastly different from the upper bounds of the previous

chapter.

• A function class is learnable if and only if it has finite VC-dimension.
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General Lower Bounds on Sample Complexity

A technical lemma

• Lemma 5.1 Suppose that α is a random variable uniformly distributed on {α , α+},
where α = 1/2− ϵ/2 and α+ = 1/2 + ϵ/2, with 0 < ϵ < 1. Suppose that

ξ1, . . . , ξm be i.i.d. {0, 1}-valued random variables with Pr(ξi = 1) = α for all i . Let

f be a function from {0, 1}m to {α , α+}. Then

P(f (ξ1, . . . , ξm) ̸= α) >
1

4

(
1−

√
1− exp

(
−2⌈m/2⌉ϵ2

1− ϵ2

))
.

Hence, if this probability is no more than δ, where 0 < δ < 1/4, then

m ≥ 2
⌊1− ϵ2

2ϵ2
ln

(
1

8δ(1− 2δ)

)⌋
.
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General Lower Bounds on Sample Complexity

The general lower bound

• Theorem 5.2 Suppose that H is a class of {0, 1}-valued functions and that H has

VC dimension d . For any learning algorithm L for H, the sample complexity

mL(ϵ, δ) of L satisfies

mL(ϵ, δ) ≥
d

320ϵ2

for all 0 < ϵ, δ < 1/64. Furthermore, if H contains at least two functions, we have

mL(ϵ, δ) ≥ 2
⌊1− ϵ2

2ϵ2
ln

(
1

8δ(1− 2δ)

)⌋
for all 0 < ϵ < 1 and 0 < δ < 1/4.
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General Lower Bounds on Sample Complexity

The Restricted Model

• Theorem 5.3 Suppose that H is a class of {0, 1}-valued functions and that H has

VC dimension d . For any learning algorithm L for H in restricted model, the sample

complexity mL(ϵ, δ) of L satisfies

mL(ϵ, δ) ≥
d − 1

32ϵ

for all 0 < ϵ < 1/8 and 0 < δ < 1/100. Furthermore, if H contains at least two

functions, we have

mL(ϵ, δ) >
1

2ϵ
ln

(
1

δ

)
for all 0 < ϵ < 3/4 and 0 < δ < 1.
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General Lower Bounds on Sample Complexity

VC-Dimension Quantifies Sample Complexity and Estimation Error

• inherent sample complexity is mH(ϵ, δ) = minL mL(ϵ, δ).

• Theorem 5.4 Suppose that H is a set of functions that map from a set X to

{0, 1}. Then H is learnable if and only if it has finite VC dimension. Furthermore,

there are constants c1, c2 > 0 such that the inherent sample complexity of the

learning problem for H satisfies

c1
ϵ2

(
VCdim(H) + ln

(
1

δ

))
≤ mH(ϵ, δ) ≤

c2
ϵ2

(
VCdim(H) + ln

(
1

δ

))
for all 0 < ϵ < 1/40 and 0 < δ < 1/20.

• proof) Combine theorem 5.2 and 4.10.

• if L is a SEM algorithm for H, then its sample complexity satisfies these

inequalities, and so its estimation error grows as
√

VCdim(H) + ln(1/δ)/m.
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General Lower Bounds on Sample Complexity

VC-Dimension Quantifies Sample Complexity and Estimation Error

• Theorem 5.5 For a class H of functions mapping from a set X to {0, 1}, the
following statements are equivalent.

(1) H is learnable.

(2) The inherent sample complexity of H, mH(ϵ, δ), satisfies

mH(ϵ, δ) = Θ

(
1

ϵ2
ln

(
1

δ

))
.

(3) The inherent estimation error of H, ϵH(m, δ), satisfies

ϵH(m, δ) = Θ

(√
1

m
ln

(
1

δ

))
.

(4) VCdim(H) < ∞.
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General Lower Bounds on Sample Complexity

VC-Dimension Quantifies Sample Complexity and Estimation Error

• Theorem 5.5(continued)

(5) The growth function of H, ΠH(m), is bounded by a polynomial in m.

(6) H has the following uniform convergence property: There is a function

ϵ0(m, δ) satisfying

• for every probability distribution P on X × {0, 1},

Pm

{
sup
h∈H

|erP(h)− êr z(h)| > ϵ0(m, δ)

}
< δ,

• ϵ0(m, δ) = Θ
(√

(1/m)ln(1/δ)
)
.

• Θ(·) notation indicates the functions are asymptotically withen a constant factor of

each other.
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General Lower Bounds on Sample Complexity

VC-Dimension Quantifies Sample Complexity and Estimation Error

• H is learnable in the restricted model iff H has finite VC dimension.

• And the inherent sample complexity of the restricted learning problem for H satisfies

c1
ϵ

(
VCdim(H) + ln

(
1

δ

))
≤ mH(ϵ, δ) ≤

c2
ϵ

(
VCdim(H) + ln

(
1

δ

))
for some constants c1, c2 > 0.
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